An Investigation of Cold-Induced Barrier Disruption in the Gut Epithelia of Locusta migratoria

Kaylen Brzezinski* & Heath A. MacMillan

Department of Biology, Carleton University, Ottawa, Ontario, Canada

Background

- Chill susceptible insects often succumb to chill coma during cold exposure¹.
- Extended and/or extreme bouts of cold result in a build up of chilling injuries and death1.
- Chilling injuries are often associated with organismal ion imbalance².
- This loss of homeostasis is thought to be at least partly driven by a cold-induced disruption of epithelia barriers in *Drosophila*³.

Key terms

Chill-susceptible insects - Suffer negative effects of chilling at temperatures above the freezing point of their bodily fluids4

Chill Coma Recovery Time (CCRT) – Time to regain coordination following cold stress

Survival – Condition of the organism 24h post-cold exposure

FITC - Fluorescently-labeled Dextran; an epithelial barrier marker (paracellular)

Research Question: Is locust gut epithelial barrier function maintained during cold stress?

Central

Posterior

Anterior

Locust recovery time increased with greater lengths of exposure to -2°C (left). Their probability of survival also decreased over time (right).

Minimal movement of FITC occurred across the gut epithelia over time in the cold.

Meet the Locusts

Locusta migratoria

- Crop pests found mostly in Africa and Eurasia
- Chill-susceptible insects
- Can experience cold overnight temperatures

Increased cold exposure still caused a rise in hemolymph [K+] and a fall in [Na+]

Methods

CCRT & Survival

- Locusts were exposed to -2°C for 2, 6, 24, or 48h
- Observed on removal for CCRT, and after 24h for degree of survival (scored from 0-5; 0: dead, 5: retain pre-cold exposure ability to walk, jump, and/or fly)

Visualizing Loss of Barrier Function

- Locusts were injected with FITC and then exposed to -2°C for 2, 6, 24, or 48h
- Samples of anterior, central, and posterior gut segments were independently analyzed for FITC presence using a fluorometer
- Hemolymph samples were analyzed for FITC content using a fluorometer

Cold-Induced Ion Imbalance

- Hemolymph Na⁺ and K⁺ concentrations were measured using ion-selective microelectrodes (ISME; see photos right)

Conclusions

of cold exposure, contrary to initial belief.

FITC

Cold-induced ion imbalance does still occur within these locusts, indicating barrier disruption¹. FITC permeability may therefore be limited by its size and charge.

Next: Use a temperature controlled Ussing chamber to see if chilling disrupts the electrical resistance of the gut epithelia

